推文小说 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第二天早上,许秋和陈婉清两人带着样品,前往老化学楼。

进入房间,就能看到一台仪器摆在正中央,想必就是透射电子显微镜TEM了。

从外观上来看,这台TEM和材一的扫描电子显微镜差不太多,都是一大坨的金属,外加上一台操作电脑。

从原理上来讲,TEM和光学显微镜差不多,只不过一个是用电子成像,一个是用光成像。

像TEM这种价格在七八位数的精密仪器,是由专门的老师负责测试的。

见到二人,测试员说道:

“是网上预约的对吧,什么样品?”

“聚合物薄膜,已经做好在铜网上了。”

说完,陈婉清将一号样品取出。

测试员用镊子夹起样品铜网看了眼,说道:

“这种样品的话,可以直接测试。”

他将铜网装在一个棍状的样品托中,然后把样品托放入TEM仪器中。

操作控制台,加液氮冷却,抽真空。

几分钟后,真空度达标,开始测试。

屏幕上实时显示着图像,最开始的放大倍数并不大。

测试员操作摇杆,移动镜头,将视野移动到铜网上,可以观察到网格状。

再次移动镜头,找到铜网上的有效层薄膜。

最后,他挑了一块平整的地方。

“拍这里?”

“好。”

得到指令,测试员开始放大图像。

许秋看到屏幕上的比例尺从1微米到500纳米,再到200纳米,最后缩小到5纳米。

测试员每放大一次图像,便拍一两张照片。

拍完一组照片后,他又将图像重新缩小至初始状态,换了另一处平整的薄膜。

再次重复一遍,又得到一组照片。

“换样品吗?”

“好。”

这个一号样品是学姐的体系。

拍出来的TEM图像,就和当年黑白电视没信号时的雪花图案差不多。

其实,有机光伏中,大多数有效层的TEM的图像都是这样的,主要是因为聚合物给体材料的弱结晶性。

它在共混薄膜中与受体材料PCBM混合的很均匀,没有大的结晶区域。

拿到这样的结果也不算意外。

一到三号都是学姐的样品,得到的图像都大同小异。

许秋比较期待基于他的体系的TEM图像,会不会有所不同呢?

陈婉清本来打算拿四号样品的,却被他制止了,换上了七号样品,打算先测这个。

七号样品是P2FBT4T-2OD:PC[70]BM,也就是基于目前最优体系的有效层薄膜,效率能上10%的那个。

装样品、加液氮冷却、抽真空、等待。

测试员开始测试。

同样也是拍了两组图像。

得到的TEM图案,和学姐的样品图案完全不同。

图案非常漂亮,不再是雪花状。

而是出现了纤维状的图案,一条条纤维,长度有几十纳米,宽度则有几纳米到十几纳米。

大概率是有着高结晶性的P2FBT4T-2OD分子形成的聚集相,可以归因为聚合物给体的高结晶性。

这和之前差示扫描量热分析DSC的结果吻合。

假如之后光源GIWAXS的结果也能表明其具有高结晶性,数据的一致性就非常好。

之后,又测试了剩余的四组样品,均表现出与七号样品类似的纤维状结构。

测试非常顺利,之前准备的八个备用样品没有派上用场。

……

离开TEM测试房间。

“学姐,我有个问题。”许秋道:

“首先声明,我不是针对你,而是在说一个普遍现象。”

“说说看呗。”

听到他冷不丁冒出这么一句话,陈婉清也是有些好奇。

“像学姐样品拍出来的TEM图像,和其他人文献中也没多少区别,”许秋道:

“把它们放在一起根本分辨不出,哪张图片对应哪个体系,既然这样,为什么人们还都要拍TEM,而且都还把它的图像放在正文中呢。”

“原来你想说这个,可能是早期TEM能看出一些信息,这个测试传统就延续下来了吧。”陈婉清道:

“你还得感谢这个测试传统,不然你也不会来测,就拿不到刚才拍的漂亮的TEM图案。”

“也是哦。”

正待离开老化学楼,陈婉清停下脚步,说道:

“我去看下测核磁的有没有开门吧,刚好也在这一栋楼,之前来预约,他们说设备故障,需要维修,现在估计已经修好了。”

核磁共振NMR的测试房间在走廊的另一头,远远的看过去,门开着,有灯光,看样子是开放了。

两人走到门口,陈婉清进入房间,许秋在外面等待。

没多久,她就出来了,开心道:

“可以测试了,核磁测试是送样的,我们制备好样品送过来就行。”

“核磁,我记得也要专门准备样品吧。”许秋道。

“没错,要用到专用的核磁管,溶剂用氘代氯仿。”陈婉清道:

“核磁管要领用,氘代氯仿我们实验室里有剩余。”

前往领用处的路上,陈婉清继续介绍道:

“我们要测核磁氢谱和碳谱,一种材料制备一个样品就够了。

其中,氢谱的信号一般比较清楚,但是要测碳谱的话,需要溶液浓度比较高,不然可能只有溶剂的信号。

小分子材料的话,溶解度高,可以配高浓度的溶液,碳谱好测一点。

我们的聚合物材料,在氘代氯仿中的溶解度,估计只有5毫克每毫升,碳谱大概率是不行的。

不过,这个倒是无妨,测不出来的话只放氢谱数据便好。”

……

领用完,返回实验室。

许秋拿起一根核磁管,发现就是一根普普通通的,细长的透明玻璃管,直径3-4毫米,长约20厘米,上面有一个塑料塞子。

氘代氯仿是玻璃瓶装的,和装医用葡萄糖的玻璃瓶是类似的,学名叫做安瓿瓶。

因为开启比较困难,所以现在已经很少见到了。

没想到在实验室中还能再见到这种小瓶子。

理论上,开启前要先用砂轮在瓶颈处切出划痕,然后再将其掰开。

当然,直接上手掰也不是不行,就是容易弄伤自己。

氘代氯仿就是氯仿中的一个氢原子,被它的同位素氘取代而成。

因为氘是没有放射性的,所以这玩意和氯仿的毒性没啥两样。

不过,一瓶氘代氯仿的体积只有一毫升,问题倒不是很大。

喜欢我有科研辅助系统请大家收藏:(www.twxs8.org)我有科研辅助系统推文小说更新速度全网最快。

推文小说推荐阅读: 美剧世界的刺客舞台之王我要做港岛豪门开局表白校花:获得千亿豪宅向往:我长生的秘密被曝光了重生之都市医圣文娱从少年中国说开始氪金医生硬核厨爸重生之投资之王我不当杀手的那些年超品风水师睡觉成全球首富天庭淘宝店都市魔帝奶爸重生千禧做酒商都市巅峰战神桃源山村直播我有黄金瞳,万亿眨眼间隐龙废婿无敌神龙养成系统都市之造化修真我每周随机一个新职业我可以进入游戏都市之超神岳父最强妖孽天王男人三十不回头乡村神仙朋友圈全知全能者重生手艺人直播我在乡村当奶爸都市之超级医圣当律师从养只獬豸开始神奇牧场这对侠侣不好惹我在人间炼仙丹我妈是世界首富上门狂婿我在90年代当首富都市至尊高手华丽逆袭直播:开局奖励女神重生90年代贵婿临门基建狂魔,开局改造万亩农场极品全能学生乡野妙手小神农悍狼狂婿鉴宝大玩家
推文小说搜藏榜: 都市:总裁姐姐,我不想努力了!刚被悔婚超级天后带娃堵门震惊!我修仙秘密被孙女直播曝光商局暗手权谋:一路飙升我是演技派当远古须弥遇到量子平台都市之无上神豪我的手机连接游戏仓库冰山总裁的贴身神医重生小人物1999医生也要谈恋爱重生香港做大亨美味大师重生之御医开局签到百亿集团前浪说好假天师,你这掌心雷咋回事我开局就站在了世界巅峰官窥乞丐王真龙从练习生到顶流巨星女总裁的极品女婿我女儿想当明星怎么办极品特种兵镇国狂婿我是监察使这个医生太厉害我只想当只废猫最帅工程师都市之八戒医徒龙魂兵王逍遥小农夫首富从看广告开始乡村小神农我要走红极品透视修仙归来当奶爸都市之仙帝归来重生之妖孽巨星天庭代购员重生圣尊妖孽学生绝品全能兵王捉个神仙当夫君我的极品女友花都神级高手狂浪龙婿
推文小说最新小说: 地窟求生:开局食物增幅三十倍热搜第一:叫你捡漏你开挂啊李氏四合院里的老中医汽车公司?不,是国货之光再启仙途我写的娱乐文被杨老板看到了放弃留学,我打造了世界第一名校娱乐:别联系了,真不熟从重生开始合租浪在娱乐圈怪物食堂奶爸,开局校花找上门,当爸了?我的夫妻关系竟能数据化首富后才知是反派两界化妆师我靠吹牛发家致富回到过去当女神武侠之父重生之娱乐风暴韩娱之kpopstar都市种子王好莱坞制作星媒舵手文娱:让你唱歌,你搁这作法?我的金融帝国百元求生:从潘家园捡漏开始带着爸妈去上班四合院里的唯一老实人硅谷大帝韩娱之隔世斑斓平行空间重生圣尊至尊魔医都市公子极道特种兵都市逍遥神官运之左右逢源绝品全才文理双修巅峰公子无敌保镖校园超级霸主医道无双牛逼戒指猎艳谱群芳美女校花的贴身高手校园传奇公子极品高富帅极品鉴定师